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Abstrael. An efficient algorithm for evaluating the standard Young-Yamanouchi 
orthogonal representation with two-Column Young tableaux far symmetricgroups is presen- 
ted. The representation matrix is given as the product of three matrices, where two of them 
are in triangular form, andare determined by an irreduciblerepresentation ofthesymmetric 
group, and the other is made up of the elements which equal 1.0 or -1 according to some 
simole rules. 

1. Introduction 

The symmetric group approach (SGA) and unitary group approach (UCA) have been 
widely applied in the study of the many-electron problem in physics and quantum 
chemistry in the last two decades (Paldus 1974, Hinze 1981, Matsen and Pauncz 1986). 
It is known that these two methods are deeply interconnected, the representation matrix 
of a unitary group generator being proportional to the representation matrix of a 
corresponding cyclic permutation (Wormer and Paldus 1980). Therefore, the symmetric 
group representation matrices play very important roles in SGA and UGA. The rep- 
resentation theory of the symmetric groups was pioneered by Young and lately by 
developed by Yamanouchi, Littlewood, Robinson, Hamermesh et al. For symmetric 
groups, there are at least two kinds of irreducible representation. In one the representa- 
tion matrices are easily obtained, such as the natural representation (Boemer 1963), 
and the other is orthogonal, such as the so-called Young-Yamanouchi orthogonal 
representation. Although the former can be directly constructed, because of the non- 
orthogonality of the representation, it is difficult to apply in physics and quantum 
chemistry. The latter has been widely used in SGA and UGA, but so far there has not 
been an efficient method for evaluating the representation matrix of an arbitrary 
permutation. In the classical treatment, the representation matrix of the transposition 
(i, i + l )  can be directly given, and that of an arbitrary permutation is evaluated from 
the primitive transpositions of forms (i, i+ 1) by matrix multiplication. More efficient 
methods for evaluating the representation matrix of the general transposition (i, j )  
were given by Rettrup (1977), Paldus and Wormer (1978) and Wilson and Gerratt 
(1979). Algorithms for calculating the representation matrix of a cyclic permutation 
have been discussed by Ruttink (1978) and Sahasrabudhe el a/ (1980). All these 
methods are suitable only for a rather limited class of permutations. Rettrup (1986) 
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presented a compact algorithm by which it is possible to obtain the representation 
matrix of an arbitrary permutation. But it is also based on matrix multiplication, 

In this paper we will present an efficient algorithm for obtaining the standard 
Young-Yamanouchi orthogonal representation with two-column Young tableaux for 
symmetric groups by using Young operators. In general, using our algorithm, a 
representation matrix is expressed as the product of three matrices, where two of them 
are the triangular intrinsic matrices of the irreducible representation, and determined 
by the irreducible representation of the symmetric group, and the other can be directly 
given, its elements taking only three values 1, 0 or -1  according to some simple rules, 

In section 2 we shall first discuss the relations between Young operators and the 
standard projection operators. Although some special relations have been noted (Klein 
and Junker 1971), we give here the general relations between them, which may be 
useful in SGA. In section 3, an efficient algorithm for obtaining the standard representa- 
tion matrices is given by using the transformation matrices between Young operators 
and the standard projection operators. In sections 4 and 5 some examples and a brief 
discussion are given respectively. The algorithm presented in this paper can be extended 
to an arbitrary representation. This problem will be discussed in a later paper. 

Wei Wu and Qianer Zhang 

2. Young operators and standard projection operators 

It is well known that the matrix elements of the standard representation satisfy the 
following orthogonality relations: 

where D[, : ] (P)  is the matrix element of the standard Young-Yamanouchi orthogonal 
representation [A]  of the permutation p and fA = f is the dimension of the irreducible 
representation [A]. 

Standard projection operators are defined as 

and Young operators are given by 

E::’ = fi,u,,pT 
where P, and N, are the row symmetrizer and the column antisymmetrizer of the 
standard Young tableau T,, respectively, and u,~  is the permutation permuting the 
index numbers of T, to those of T,. E[,:] is essentially idempotent and generates a left 
ideal which yields Young’s natural representation (Boerner 1963). Because the 
decomposition of the representation space into irreducible subspaces is unique, the 
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Young's natural representation is equivalent to the standard representation. For a given 
representation [A], we have 

Let us discuss the coefficients suo,,>. Considering 

According to equation (61, for p ,  E P , ,  P,E N,, we can prove that 

E X 1  = &,p,EX1pl = afl , , ,eX1 (9) 

where we used the properties of the representation matrix elements for [A]=  [2", 1'1, 

1 ~ ~ D b : ] ( p ) =  m!(m+l)!S,&, ( 1 1 )  
P E N ,  

where P, and N, are respectively the sets of row and column permutations for the 
tableau T,, and both are subgroups of S,, = f l ,  as p is an even or odd operator. 
Equation (10) has been proved by Panin (1983), and similarly, equation ( 1 1 )  can be 
proved. 

Comparing the coefficients of elements on both sides of equation (9), we get 

thus 

Comparing the coefficients of the unit element on both sides of equation (13), we have 

a,,,,, = *h:" (14) 

where h A = 2 " m ! ( m + l ) ! .  It can be proved that D$:](u,,)>O, thus 

a, , , , ,  = h1I2 

where equations (18) and (19) have been presented by Klein and Junker (1971). 
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From equation (17), it is easy to obtain the relations between Young operators and 

(20) 

the standard projection operators. 

E!:] = u,,€~~u,, = h:” 1 D~](m,,)ev~D~](uJ.  
“.U 

As special cases, we have 

(30) [ A I  [*I [ A I  e, = (e,, , e, , . . . , e,, ). 

E = h:I2AeB (31) 

E ,  = h:/’e,A (32) 

Equations (20)-(22) can be rewritten as 

E,= h:/’e,B. (33) 

Equations (21) and (22) imply that the relations between €?’and e:;] and between 
Eyl and e:’ are linear. It can be found that the transformation matrices A and B are 
in triangular form. Generally, the direct product of both matrices is the transformation 
matrix between E!:] and e:’. 

Comparing the coefficients of the same permutation on both sides of equation (17). 
--e have 

3. The algorithm for evaluating the matrix elements of the standard 
Young-Yamanonchi orthogonal representation 

For any given permutation rr, we have 

D?? ( uu,msn) = ,Y D[.^*l( U”,) D[*:’( T) D\:]( U,“ 1 u , v = l , Z  , . . . ,  f 
kl 

(35) 
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For any given indices U ,  U, defining the matrices D(T), U, V and W ( P )  as follows: 

[ D ( w ) I F s  = DE1(r) (36) 

( U L  = D E 1 ( d  (37) 

( VIrs = (38) 

[ W ( r ) L S  = Dk1(~ur~u50) (39) 
we have 

W (  r) = ( W (  n ) r s  1 = DX1(u,,vusi ) (45) 

(46) 
Because it is easy to obtain the elements D\:](T), D>$'(T) and D X 1 ( r )  (Goddard 

1967, Zhang and Li 1989), equations (42), (44) and (46) provide algorithms for 
evaluating the standard Young-Yamanouchi representation matrices, where the repre- 
sentation matrix D ( P )  can be expressed as the product of three matrices. Here we 
focus our attention on the third algorithm, equation (46). Defining 

D( P) =A-' W (  ?r)B-' .  

Et f l= I  Crs(T)T (47) 

E~:l=u",Eklu"s =I: C""(T)U,"PU", = E  C""(U",TUS")T 

r 

and using 

(48) 
n 7, 

for any given indices r, s, U ,  U, we have 

C,*(.rr) = C " " ( G T S " ) .  (49) 
For example, 

From equations (17)  and (SO), we have 

Eqca!iox (45) msy be rewri!!en ~r 

It is evident from equation (50) that the element [ C ( T ) ] , ~  may be obtained by the 
following steps: 
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(i) writing the corresponding permutation T'= 8 , r ~ u y l ;  
(ii) dividing the index numbers of T' into several sets according to whether they 

are in the first or the second column of T , ,  for example, 

T ' = ( a i , .  . . aj,,pi,.. .pi,, ai,. . .)(. .  .) 

where ai and pi are the index numbers in the first and the second columns of T I ,  
respectively; 

(iii) retaining the last index number in every set, and deleting other index numbers, 
or deleting an independent cycle if there is only one set in it; 

(iv) if the number of index numbers retained is even, and for any given pi, there 
is a corresponding index number a, = 0; - 1 ,  [ C ( T ) ] , ~  = (-l)*+", otherwise [C(T)],> = 
0, where p and U are the numbers of indices and cycles deleted, respectively. 

Using 

DY(u,,u~,) =I D.\:~(U,JD%I(.~,) 

Z [Dy1(u~T)12- 1 s = l , 2 , .  . . ,f 

we have the following recursion formula: 

=I ( 1  -2 ,  A:,)li2 r = s  (53) 

r < s. 
(0 

From equation (53), we can obtain A in order as A ,  A, -,,, . . . , A l f ;  A,,-, , . . . , A l , .  
Similarly, we can obtain B by 

r = s  

r > s .  

4. Examples 

For N = 4 ,  S = 1/2 = 1, 

4 4 

r l 1  2 3 

(54) 
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For [A]  = [2, 12], the intrinsic matrices A and B are given by 

_- 
2 6 3 

Jz _- 
3 

_- - 

Similarly, 

thus 

5. Discussion 

In this paper we have given a direct method for evaluating the standard Young- 
Yamanouchi orthogonal representation matrices which is more efficient than those 
used up to the present. For instance, for n=(18), multiplication of 13 matrices 
corresponding to transpositions is involved in the traditional treatment, but we only 
need three matrices, where two triangular matrices are determined by an irreducible 
representation of the symmetric groups. 
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It is worthy of note that for some irreducible representations, we have 
112 J?=(E) A-'. ( 5 5 )  

Forinstance,for N = 3 , S = i ;  N = 4 , S = O ;  N = 5 , S = $ ;  N = 6 , S = 2 , A a n d  Bsatisfy 
equation ( 5 5 ) .  It implies that C ( T )  is an irreducible representation of the symmetric 
group. For arbitrary irreducible representations, we have 

It is clear that D'(?r) is also an irreducible representation and similar to that 
presented by Gallup (1972). 

In this paper we have presented the transformation relations between the standard 
projection operators and Young operators which could connect the group algebra 
method with the representation theory of symmetric groups. Using these formulae on 
one hand, the representation matrices of symmetric groups are obtained by Young 
operators, and on the other hand, some properties of Young operators may easily be 
derived by using the representation theory. For instance, it is evident from equation 
(20) that 

Equation (57) was presented by Rutherford (1948) who used complicated group algebra 
operations. 

We have discussed the irreducible representation matrices only for the two-column 
Young tableau in this paper. There is a similar algorithm for an arbitrary representation, 
which will he discussed in a later paper. 
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Appendix. Matrices k' and E-' 

N = 3, S =$; N =4, S =  0: 

N = 4, S = 1: 
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N = 5 ,  S =i: 

N = 5 ,  S = $ ;  N - 6 ,  S=O: 

Ji; - 
2 

0 

Jz _- 
2 

Ji; - 
2 

0 

0 

Ji _- 
2 

0 

Ji; - 
2 

0 

Ji - 
4 
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N =6, S = 2: 

0 

' , - I  = 

Jis 
6 

J5 

_ _  

- 
2 

Jis 

J3 

- 
6 

_- 
6 

m 

J3 

_- 
6 

- 
6 

__ 
m m m  

A 54% 
3 12 

0 _- - 
12 - -- 12 -I 0 

0 

N =6,  S =  1: 

V T S  

343 

_- 
5 

- 
6 

0 

0 

0 

0 

0 

0 

0 

JT5 
5 
J3 
5 

2m 

- 

_- 

- 
5 

0 

0 

0 

0 

0 

0 

0 0 0 

2 m  Ji3 
5 15 
- - 0 

Jis - 
3 

0 0 

JE  _ _  - _- 
5 10 l o  

3 J 5  J5 0 _- - 
10 10 

m 
0 -- 

5 
3 8  3& 3 J 5  

5 10 10 

0 

- _- - 

3 m  JT5 
10 10 

m 
0 -  

0 - -- 

5 
0 

0 0 0 

0 0 0 

0 0 0 

J5 A A 1  di 2 J z 2  
6 3 3  6 3 3  1 - 

1 1  

3 J i 5  

3 J 3  
10 

0 

_- 
l o  

- 

3 J 5  
10 
- 

a _- 
l o  

0 

m - 
5 

0 

0 

0 

m JE 

J3 l l J 3  

_- - 
6 6 

- ~ 

30 30 
m 2 m  _- _- 
15 IS 

3 6  J3 - 

JT5 2 f i  

_- 
10 5 

30 15 
- _- 

m m  - _- 
15 15 
m m  - 

4 f i  - V B  

_- 
15 15 

15 15 
0 1 

- 
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J5 - 
3 

0 

Jz __ 
6 

2 J z  

Jz 
_- 

3 

_- 
3 

0 

Ji _- 
3 

Ji 
3 

0 

- 

Jz 

2 
3 
- 

Jz - 
6 

1 
6 

_- 

J5 - 
2 

1 
2 

_- 0 

2J5 
I 

3 
2 
3 
- 1 

3 
- 0 

1 
6 
- 0 0 

1 
2 
_ 0 0 

1 
2 
- 0 0 0 0 

3 
2 
- 0 0 0 0 0 

0 0 0 0 0 0 
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